3x3 Matrices

Double precision

union ksl_mat3x3_t
#include <matrix.h>

A general 3x3 double precision matrix.

This union allows accessing double precision mat3x3 quantities by field name, as a singly dimensioned array, as a doubly dimensioned array, or by accessing a specific column. If using the at or as_array operators, quantities are accessed in column major order.

The following examples illustrate how to access row 2, column 1 (using 0 based indexing) of matrix R. The following access methods are equivalent.

R.as_array[2 + 1 * 3];
R.at[1][2];
R.m21;
R.v1.z;
R.v1.at[2];
R.v[1].z;
R.v[1].at[2];

See also the ksl_mat3x3_get and ksl_mat3x3_set functions.

Public Members

double as_array[9]
struct ksl_mat3x3_t::[anonymous] [anonymous]

anonymous union allows accessing quantities at specified index in linear array, where entities are specified in column major order

double at[3][3]
struct ksl_mat3x3_t::[anonymous] [anonymous]

anonymous union allows accessing quantities at specified index in a doubly dimensioned array, where entities are specified in column major order

double m00
double m10
double m20
double m01
double m11
double m21
double m02
double m12
double m22
struct ksl_mat3x3_t::[anonymous] [anonymous]

anonymous union allows accessing rotation matrix quantities by field name

ksl_vec3_t v0
ksl_vec3_t v1
ksl_vec3_t v2
struct ksl_mat3x3_t::[anonymous] [anonymous]

anonymous union allows accessing columns of rotation matrix quantities by field name

ksl_vec3_t v[3]
struct ksl_mat3x3_t::[anonymous] [anonymous]

anonymous union allows accessing columns of rotation matrix quantities at specified index

ksl_mat3x3_t ksl_mat3x3(const double m00, const double m01, const double m02, const double m10, const double m11, const double m12, const double m20, const double m21, const double m22)

ksl_mat3x3_t constructor.

Note that in the constructor, fields are specified in row major order. Internally, ksl_mat3x3_t datastructures are stored in column major order.

ksl_mat3x3_t ksl_mat3x3_cmo(const double m00, const double m10, const double m20, const double m01, const double m11, const double m21, const double m02, const double m12, const double m22)

alternative ksl_mat3x3_t constructor.

In this alternate constructor, fields are specified in column major order to match the internal layout of ksl_mat3x3_t datastructures.

ksl_mat3x3_t *ksl_mat3x3_alloc(int n)

allocates n ksl_mat3x3_t datastructures on the heap. Must be freed by the user.

void ksl_mat3x3_setIdentity(ksl_mat3x3_t *r)

Set a double precision 3x3 matrix to identity.

\( I \rightarrow R \)

Parameters
  • r: [in/out] input 3x3 matrix

void ksl_mat3x3_set(ksl_mat3x3_t *R, const int row, const int column, const double value)

Set a value in a double precision 3x3 matrix at specified row and column index.

Bounds checking are performed in debug mode. Bounds checking can be disabled by compiling in release mode using the compiler flag -DNDEBUG.

Parameters
  • R: [in/out]
  • row: [in] row index, \(0 \le row \lt 3\)
  • column: [in] column index, \(0 \le column \lt 3\)
  • value: [in] value to set

void ksl_mat3x3_setFromVectors(ksl_mat3x3_t *R, const ksl_vec3_t *x, const ksl_vec3_t *y, const ksl_vec3_t *z)

Set a double precision 3x3 matrix from 3 column vectors.

\( \begin{bmatrix} \underline{v}_x & \underline{v}_y & \underline{v}_z \end{bmatrix} \rightarrow R \)

Parameters
  • R: [in/out] 3x3 rotation matrix
  • x: [in] first column to set
  • y: [in] second column to set
  • z: [in] third column to set

double ksl_mat3x3_get(const ksl_mat3x3_t *R, const int row, const int column)

TODO document this function.

void ksl_mat3x3_copy(const ksl_mat3x3_t *ri, ksl_mat3x3_t *ro)

TODO document this function.

int ksl_mat3x3_invert(ksl_mat3x3_t *R)

TODO document this function.

int ksl_mat3x3_inverted(const ksl_mat3x3_t *ri, ksl_mat3x3_t *ro)

TODO document this function.

void ksl_mat3x3_transpose(ksl_mat3x3_t *R)

TODO document this function.

void ksl_mat3x3_transposed(const ksl_mat3x3_t *ri, ksl_mat3x3_t *ro)

TODO document this function.

ksl_mat3x3_getEulerAngles(r, angles, axisType, ...)

This macro is used to obtain a double precision sequence of Euler angles from an orthonormal rotation matrix using a specified axis sequence convention.

Note that this function requires the input direction cosine matrix to be orthonormal, i.e., a member of the SO3 group. For efficiency, no checks are performed on the input direction cosine matrix to check whether it is orthonormal.

This function decomposes a general direction cosine matrix into three primitive direction cosine matrices, whose axes are determined by a ksl_axis_enum_t data structure which is passed in through the axisType parameter. The direction cosine matrix is passed in through r, and the three computed angles are updated and returned in angles.

Optionally, reference angles from a previous nearby position can be passed in the last argument.

Parameters
  • r: [in] direction cosine matrix
  • axisType: [in] an enum specifying angle sequence
  • angles: [out] sequence of euler angles
  • referenceAngles: [in/optional] a sequence of reference angles from a nearby pose, used to obtain continuity in angles between poses.

void ksl_mat3x3_getEulerAnglesWithReference(const ksl_mat3x3_t *r, const ksl_axis_enum_t axisType, ksl_vec3_t *angles, ...)

Obtain double precision sequence of Euler angles using specified axis sequence convention.

This function requires the input direction cosine matrix to be orthonormal, i.e., a member of the SO3 group. For efficiency, no checks are performed on the input direction cosine matrix to verify that it is orthonormal.

This function decomposes a general direction cosine matrix into three primitive direction cosine matrices, whose axes are determined by a ksl_axis_enum_t enum data structure passed in through the axisType parameter. The direction cosine matrix is passed in through the r, and the three computed angles are updated and returned in angles.

Optionally, reference angles from a previous nearby position can be passed in the last argument.

Parameters
  • r: [in] direction cosine matrix
  • axisType: [in] an enum specifying angle sequence
  • angles: [out] sequence of euler angles
  • referenceAngles: [in/optional] a sequence of reference angles from a nearby pose, used to obtain continuity in angles between poses.

void ksl_mat3x3_setFromEulerAngles(ksl_mat3x3_t *, const ksl_axis_enum_t axisType, const ksl_vec3_t *)

Set a double precision mat3x3 matrix from a sequence of Euler angles.

This function takes three Euler angles in one of twelve rotation orders and outputs a direction cosine matrix. The axis sequence is input using a ksl_axis_enum_t datastructure.

\( R_x = \begin{bmatrix} 1 & 0 & 0\\ 0 & c & -s \\ 0 & s & c \end{bmatrix}\)

\( R_y = \begin{bmatrix} c & 0 & s\\ 0 & 1 & 0 \\ -s & 0 & c \end{bmatrix}\)

\( R_z = \begin{bmatrix} c & -s & 0\\ s & c & 0 \\ 0 & 0 & 1 \end{bmatrix}\)

void ksl_mat3x3_getAxisAngle(const ksl_mat3x3_t *r, ksl_vec3_t *axis, double *angle)

Get axis and angle from a double precision rotation matrix.

This function requires the input direction cosine matrix to be orthonormal, i.e., a member of the SO3 group. For efficiency, no checks are performed on the input direction cosine matrix to verify that it is orthonormal.

Note that if sin is close to 0, the axis of rotation is not well defined.

Parameters
  • r: [in] input rotation matrix
  • axis: [out] axis of rotation
  • angle: [out] angle of rotation in radians

void ksl_mat3x3_setFromAxisAngle(ksl_mat3x3_t *, const ksl_vec3_t *, const double)

Set double precision rotation matrix from axis and angle representation.

Parameters
  • r: [out] rotation matrix will be set here
  • axis: [in] axis of rotation
  • angle: [in] angle of rotation in radians

double ksl_mat3x3_determinant(const ksl_mat3x3_t *r_i)

Compute the determinant of a 3x3 double precision matrix.

Parameters
  • ri: [in] input 3x3 matrix
  • determinant:

Single precision

union ksl_mat3x3f_t
#include <matrix.h>

A general 3x3 single precision matrix.

This union allows accessing single precision mat3x3 quantities by field name, as a singly dimensioned array, as a doubly dimensioned array, or by accessing a specific column. If using the at or as_array operators, quantities are accessed in column major order.

The following examples illustrate how to access row 2, column 1 (using 0 based indexing) of matrix R. The following access methods are equivalent.

R.as_array[2 + 1 * 3];
R.at[1][2];
R.m21;
R.v1.z;
R.v1.at[2];
R.v[1].z;
R.v[1].at[2];

See also the ksl_mat3x3f_get and ksl_mat3x3f_set functions.

Public Members

float as_array[9]
struct ksl_mat3x3f_t::[anonymous] [anonymous]

anonymous union allows accessing quantities at specified index in linear array, where entities are specified in column major order

float at[3][3]
struct ksl_mat3x3f_t::[anonymous] [anonymous]

anonymous union allows accessing mat3x3 quantities at specified index in a doubly dimensioned array, where entities are specified in column major order

float m00
float m10
float m20
float m01
float m11
float m21
float m02
float m12
float m22
struct ksl_mat3x3f_t::[anonymous] [anonymous]

anonymous union allows accessing rotation matrix quantities by field name

ksl_vec3f_t v0
ksl_vec3f_t v1
ksl_vec3f_t v2
struct ksl_mat3x3f_t::[anonymous] [anonymous]

anonymous union allows accessing columns of rotation matrix quantities by field name

ksl_vec3f_t v[3]
struct ksl_mat3x3f_t::[anonymous] [anonymous]

anonymous union allows accessing columns of rotation by index matrix quantities at specified index

ksl_mat3x3f_t ksl_mat3x3f(const float m00, const float m01, const float m02, const float m10, const float m11, const float m12, const float m20, const float m21, const float m22)

ksl_mat3x3f_t constructor.

Note that in the constructor, fields are specified in row major order. Internally, ksl_mat3x3f_t datastructures are stored in column major order.

ksl_mat3x3f_t ksl_mat3x3f_cmo(const float m00, const float m10, const float m20, const float m01, const float m11, const float m21, const float m02, const float m12, const float m22)

alternative ksl_mat3x3f_t constructor.

In this alternate constructor, fields are specified in column major order to match the internal layout of ksl_mat3x3f_t datastructures.

ksl_mat3x3f_t *ksl_mat3x3f_alloc(int n)

allocates n ksl_mat3x3f_t datastructures on the heap. Must be freed by the user.

void ksl_mat3x3f_setIdentity(ksl_mat3x3f_t *r)

Set a single precision 3x3 matrix to identity.

\( I \rightarrow R \)

Parameters
  • r: [in/out] input 3x3 matrix

void ksl_mat3x3f_set(ksl_mat3x3f_t *R, int row, int column, float value)

Set a value in a single precision 3x3 matrix at specified row and column index.

Bounds checking are performed in debug mode. Bounds checking can be disabled by compiling in release mode using the compiler flag -DNDEBUG.

Parameters
  • R: [in/out]
  • row: [in] row index, \(0 \le row \lt 3\)
  • column: [in] column index, \(0 \le column \lt 3\)
  • value: [in] value to set

void ksl_mat3x3f_setFromVectors(ksl_mat3x3f_t *R, const ksl_vec3f_t *x, const ksl_vec3f_t *y, const ksl_vec3f_t *z)

Set a single precision 3x3 matrix from 3 column vectors.

\( \begin{bmatrix} \underline{v}_x & \underline{v}_y & \underline{v}_z \end{bmatrix} \rightarrow R \)

Parameters
  • R: [in/out] 3x3 rotation matrix
  • x: [in] first column to set
  • y: [in] second column to set
  • z: [in] third column to set

float ksl_mat3x3f_get(const ksl_mat3x3f_t *R, const int row, const int column)

TODO document this function.

void ksl_mat3x3f_copy(const ksl_mat3x3f_t *ri, ksl_mat3x3f_t *ro)

TODO document this function.

int ksl_mat3x3f_invert(ksl_mat3x3f_t *R)

TODO document this function.

int ksl_mat3x3f_inverted(const ksl_mat3x3f_t *ri, ksl_mat3x3f_t *ro)

TODO document this function.

void ksl_mat3x3f_transpose(ksl_mat3x3f_t *R)

TODO document this function.

void ksl_mat3x3f_transposed(const ksl_mat3x3f_t *ri, ksl_mat3x3f_t *ro)

TODO document this function.

ksl_mat3x3f_getEulerAngles(r, angles, axisType, ...)

This macro is used to obtain a single precision sequence of Euler angles from an orthonormal rotation matrix using a specified axis sequence convention.

Note that this function requires the input direction cosine matrix to be orthonormal, i.e., a member of the SO3 group. For efficiency, no checks are performed on the input direction cosine matrix to check whether it is orthonormal.

This function decomposes a general direction cosine matrix into three primitive direction cosine matrices, whose axes are determined by a ksl_axis_enum_t data structure which is passed in through the axisType parameter. The direction cosine matrix is passed in through r, and the three computed angles are updated and returned in angles.

Optionally, reference angles from a previous nearby position can be passed in the last argument.

Parameters
  • r: [in] direction cosine matrix
  • axisType: [in] an enum specifying angle sequence
  • angles: [out] sequence of euler angles
  • referenceAngles: [in/optional] a sequence of reference angles from a nearby pose, used to obtain continuity in angles between poses.

void ksl_mat3x3f_getEulerAnglesWithReference(const ksl_mat3x3f_t *r, const ksl_axis_enum_t axisType, ksl_vec3f_t *angles, ...)

Obtain single precision sequence of Euler angles using specified axis sequence convention.

This function requires the input direction cosine matrix to be orthonormal, i.e., a member of the SO3 group. For efficiency, no checks are performed on the input direction cosine matrix to verify that it is orthonormal.

This function decomposes a general direction cosine matrix into three primitive direction cosine matrices, whose axes are determined by a ksl_axis_enum_t enum data structure passed in through the axisType parameter. The direction cosine matrix is passed in through the r, and the three computed angles are updated and returned in angles.

Optionally, reference angles from a previous nearby position can be passed in the last argument.

Parameters
  • r: [in] direction cosine matrix
  • axisType: [in] an enum specifying angle sequence
  • angles: [out] sequence of euler angles
  • referenceAngles: [in/optional] a sequence of reference angles from a nearby pose, used to obtain continuity in angles between poses.

void ksl_mat3x3f_setFromEulerAngles(ksl_mat3x3f_t *, const ksl_axis_enum_t axisType, const ksl_vec3f_t *)

Set a single precision mat3x3f matrix from a sequence of Euler angles.

This function takes three Euler angles in one of twelve rotation orders and outputs a direction cosine matrix. The axis sequence is input using a ksl_axis_enum_t datastructure.

\( R_x = \begin{bmatrix} 1 & 0 & 0\\ 0 & c & -s \\ 0 & s & c \end{bmatrix}\)

\( R_y = \begin{bmatrix} c & 0 & s\\ 0 & 1 & 0 \\ -s & 0 & c \end{bmatrix}\)

\( R_z = \begin{bmatrix} c & -s & 0\\ s & c & 0 \\ 0 & 0 & 1 \end{bmatrix}\)

void ksl_mat3x3f_getAxisAngle(const ksl_mat3x3f_t *r, ksl_vec3f_t *axis, float *angle)

Get axis and angle from a single precision rotation matrix.

This function requires the input direction cosine matrix to be orthonormal, i.e., a member of the SO3 group. For efficiency, no checks are performed on the input direction cosine matrix to verify that it is orthonormal.

Note that if sin is close to 0, the axis of rotation is not well defined.

Parameters
  • r: [in] input rotation matrix
  • axis: [out] axis of rotation
  • angle: [out] angle of rotation in radians

void ksl_mat3x3f_setFromAxisAngle(ksl_mat3x3f_t *r, const ksl_vec3f_t *axis, const float angle)

Set a single precision rotation matrix from axis and angle representation.

Parameters
  • r: [out] rotation matrix to set
  • axis: [in] axis of rotation
  • angle: [in] angle of rotation in radians

float ksl_mat3x3f_determinant(const ksl_mat3x3f_t *)

Compute the determinant of a 3x3 single precision matrix.

Parameters
  • ri: [in] input 3x3 matrix
  • determinant: